The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma

“The recent clinical success of targeted therapies in melanoma directed at the oncogene BRAF validates the concept of targeting oncogenes. The p16-cyclin D-CDK4/6-retinoblastoma protein pathway (CDK4 pathway) is dysregulated in 90% of melanomas, and is, therefore, an obvious therapeutic target for this disease. The main outcome of CDK4 activation is the phosphorylation and, thus, inhibition of the retinoblastoma protein leading to G1–S cell-cycle transition. In addition, CDK4 directly phosphorylates other proteins that promote cell-cycle progression and inhibit both cell senescence and apoptosis. In preclinical studies, the response to CDK4 inhibition correlates with genomic changes that increase CDK4 activity, most notably where the tumor suppressor CDKN2A(p16INK4A) is deleted. A central question is whether melanomas with activating events in the CDK4 pathway have become “addicted” to this signaling pathway, in which case inhibition of CDK4 would not simply induce cell-cycle arrest but induce cell death and tumor regression. Recently, a number of selective CDK4/6 inhibitors have entered clinical trials, and these compounds are showing great promise in that they are well tolerated and show clinical benefit. This review discusses the CDK4 pathway, its dysregulation in melanoma, the consequences of CDK4 pathway inhibition, and potential novel combinational strategies for the treatment of melanoma.”


Cancer: Killing from the Inside

“Lysosomes are the main degradative compartment in cells, but they are also involved in cell-death pathways. Studies using existing drugs show that lysosomes are excellent pharmacological targets for selectively destroying cancer cells.”


Cancer: Killing from the Inside

“Lysosomes are the main degradative compartment in cells, but they are also involved in cell-death pathways. Studies using existing drugs show that lysosomes are excellent pharmacological targets for selectively destroying cancer cells.”


Cancer: Killing from the Inside

“Lysosomes are the main degradative compartment in cells, but they are also involved in cell-death pathways. Studies using existing drugs show that lysosomes are excellent pharmacological targets for selectively destroying cancer cells.”


Cancer Cell – Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase

“Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.”


Cancer Cell – Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase

“Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.”


Cancer Cell – Transformation-Associated Changes in Sphingolipid Metabolism Sensitize Cells to Lysosomal Cell Death Induced by Inhibitors of Acid Sphingomyelinase

“Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.”


Cisplatin Causes Cell Death via TAB1 Regulation of p53/MDM2/MDMX Circuitry

“The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient’s tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53-MDM2 circuitry and a key MAPK signaling pathway.”


Cisplatin Causes Cell Death via TAB1 Regulation of p53/MDM2/MDMX Circuitry

“The interdependence of p53 and MDM2 is critical for proper cell survival and cell death and, when altered, can lead to tumorigenesis. Mitogen-activated protein kinase (MAPK) signaling pathways function in a wide variety of cellular processes, including cell growth, migration, differentiation, and death. Here we discovered that transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1), an activator of TAK1 and of p38α, associates with and inhibits the E3 ligase activity of MDM2 toward p53 and its homolog, MDMX. Depletion of TAB1 inhibits MDM2 siRNA-mediated p53 accumulation and p21 induction, partially rescuing cell cycle arrest induced by MDM2 ablation. Interestingly, of several agents commonly used as DNA-damaging therapeutics, only cell death caused by cisplatin is mitigated by knockdown of TAB1. Two mechanisms are required for TAB1 to regulate apoptosis in cisplatin-treated cells. First, p38α is activated by TAB1 to phosphorylate p53 N-terminal sites, leading to selective induction of p53 targets such as NOXA. Second, MDMX is stabilized in a TAB1-dependent manner and is required for cell death after cisplatin treatment. Interestingly TAB1 levels are relatively low in cisplatin-resistant clones of ovarian cells and in ovarian patient’s tumors compared with normal ovarian tissue. Together, our results indicate that TAB1 is a potential tumor suppressor that serves as a functional link between p53-MDM2 circuitry and a key MAPK signaling pathway.”