Hormone-Mimicking Drugs Are Used To Treat Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs)


Neuroendocrine tumors (NETs) can arise wherever neuroendocrine (hormone-producing) cells are found—which is in most organs. Most NETs (65%-70%) are gastroenteropancreatic, or GEP, arising in different gastrointestinal organs. GEP-NETs are most commonly found in the small bowel (including the appendix), stomach, and rectum. Still, NETs in general are rare, which complicates the development of new treatments and identification of the genetic drivers of these cancers. Treatment of GEP-NETs is clearly an unmet medical need, and is now even more urgent because their incidence has been on the rise in the last 20 years. Continue reading…


Dicerna Pharmaceuticals Initiates Phase 1 Study of DCR-MYC in Patients with Solid Tumors and Hematological Malignancies

“Dicerna Pharmaceuticals, Inc. DRNA +0.67% , a leader in the development of RNAi-based therapeutics, today announced the initiation of a Phase 1 dose-escalating clinical study of DCR-MYC, (also known as DCR-M1711), in patients with solid tumors, multiple myeloma, or lymphoma. DCR-MYC, Dicerna’s first drug candidate to enter clinical testing, is a Dicer Substrate siRNA (DsiRNA) that targets the driver oncogene MYC, which is central to the growth of many hematologic and solid tumor malignancies. Dicerna is investigating DCR-MYC in a variety of tumor types with the initial focus on hepatocellular carcinoma.”

Editor’s note: This new drug may hold promise for people with lung cancer or melanoma, as well as other cancer types.


Dicerna Pharmaceuticals Initiates Phase 1 Study of DCR-MYC in Patients with Solid Tumors and Hematological Malignancies

“Dicerna Pharmaceuticals, Inc. DRNA +0.67% , a leader in the development of RNAi-based therapeutics, today announced the initiation of a Phase 1 dose-escalating clinical study of DCR-MYC, (also known as DCR-M1711), in patients with solid tumors, multiple myeloma, or lymphoma. DCR-MYC, Dicerna’s first drug candidate to enter clinical testing, is a Dicer Substrate siRNA (DsiRNA) that targets the driver oncogene MYC, which is central to the growth of many hematologic and solid tumor malignancies. Dicerna is investigating DCR-MYC in a variety of tumor types with the initial focus on hepatocellular carcinoma.”

Editor’s note: This new drug may hold promise for people with lung cancer or melanoma, as well as other cancer types.