HDAC Inhibitor Confers Radiosensitivity to Prostate Stem-Like Cells

“Background: Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction. Methods: Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser. Results: Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation. Interpretation: Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction.”

 


Selective Cancer Targeting with Prodrugs Activated by Histone Deacetylases and a Tumour-Associated Protease

“Eradication of cancer cells while minimizing damage to healthy cells is a primary goal of cancer therapy. Highly selective drugs are urgently needed. Here we demonstrate a new prodrug strategy for selective cancer therapy that utilizes increased histone deacetylase (HDAC) and tumour-associated protease activities produced in malignant cancer cells. By coupling an acetylated lysinegroup to puromycin, a masked cytotoxic agent is created, which is serially activated by HDAC and an endogenous protease cathepsin L (CTSL) that remove the acetyl group first and then the unacetylated lysine group liberating puromycin. The agent selectively kills human cancer cell lines with high HDAC and CTSL activities. In vivo studies confirm tumour growth inhibition in prodrug-treated mice bearing human cancer xenografts. This cancer-selective cleavage of the masking group is a promising strategy for the next generation of anticancer drug development that could be applied to many other cytotoxic agents.”


Selective Cancer Targeting with Prodrugs Activated by Histone Deacetylases and a Tumour-Associated Protease

“Eradication of cancer cells while minimizing damage to healthy cells is a primary goal of cancer therapy. Highly selective drugs are urgently needed. Here we demonstrate a new prodrug strategy for selective cancer therapy that utilizes increased histone deacetylase (HDAC) and tumour-associated protease activities produced in malignant cancer cells. By coupling an acetylated lysinegroup to puromycin, a masked cytotoxic agent is created, which is serially activated by HDAC and an endogenous protease cathepsin L (CTSL) that remove the acetyl group first and then the unacetylated lysine group liberating puromycin. The agent selectively kills human cancer cell lines with high HDAC and CTSL activities. In vivo studies confirm tumour growth inhibition in prodrug-treated mice bearing human cancer xenografts. This cancer-selective cleavage of the masking group is a promising strategy for the next generation of anticancer drug development that could be applied to many other cytotoxic agents.”


Selective Cancer Targeting with Prodrugs Activated by Histone Deacetylases and a Tumour-Associated Protease

“Eradication of cancer cells while minimizing damage to healthy cells is a primary goal of cancer therapy. Highly selective drugs are urgently needed. Here we demonstrate a new prodrug strategy for selective cancer therapy that utilizes increased histone deacetylase (HDAC) and tumour-associated protease activities produced in malignant cancer cells. By coupling an acetylated lysinegroup to puromycin, a masked cytotoxic agent is created, which is serially activated by HDAC and an endogenous protease cathepsin L (CTSL) that remove the acetyl group first and then the unacetylated lysine group liberating puromycin. The agent selectively kills human cancer cell lines with high HDAC and CTSL activities. In vivo studies confirm tumour growth inhibition in prodrug-treated mice bearing human cancer xenografts. This cancer-selective cleavage of the masking group is a promising strategy for the next generation of anticancer drug development that could be applied to many other cytotoxic agents.”


Development of a Histone Deacetylase 6 Inhibitor and its Biological Effects

“Development of isoform-selective histone deacetylase (HDAC) inhibitors is important in elucidating the function of individual HDAC enzymes and their potential as therapeutic agents. Among the eleven zinc-dependent HDACs in humans, HDAC6 is structurally and functionally unique. Here, we show that a hydroxamic acid-based small-molecule N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]- 2-oxoethyl)benzamide (HPOB) selectively inhibits HDAC6 catalytic activity in vivo and in vitro. HPOB causes growth inhibition of normal and transformed cells but does not induce cell death. HPOB enhances the effectiveness of DNA-damaging anticancer drugs in transformed cells but not normal cells. HPOB does not block the ubiquitin-binding activity of HDAC6. The HDAC6-selective inhibitor HPOB has therapeutic potential in combination therapy to enhance the potency of anticancer drugs.”


Development of a Histone Deacetylase 6 Inhibitor and its Biological Effects

“Development of isoform-selective histone deacetylase (HDAC) inhibitors is important in elucidating the function of individual HDAC enzymes and their potential as therapeutic agents. Among the eleven zinc-dependent HDACs in humans, HDAC6 is structurally and functionally unique. Here, we show that a hydroxamic acid-based small-molecule N-hydroxy-4-(2-[(2-hydroxyethyl)(phenyl)amino]- 2-oxoethyl)benzamide (HPOB) selectively inhibits HDAC6 catalytic activity in vivo and in vitro. HPOB causes growth inhibition of normal and transformed cells but does not induce cell death. HPOB enhances the effectiveness of DNA-damaging anticancer drugs in transformed cells but not normal cells. HPOB does not block the ubiquitin-binding activity of HDAC6. The HDAC6-selective inhibitor HPOB has therapeutic potential in combination therapy to enhance the potency of anticancer drugs.”


The Antimelanoma Activity of the Histone Deacetylase Inhibitor Panobinostat (LBH589) is Mediated by Direct Tumor Cytotoxicity and Increased Tumor Immunogenicity

“Melanoma is the deadliest skin cancer, and its incidence has been increasing faster than any other cancer. Although immunogenic, melanoma is not effectively cleared by host immunity. In this study, we investigate the therapeutic, antimelanoma potential of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) by assessing both its cytotoxic effects on melanoma cells as well as enhancement of immune recognition of melanoma. Utilizing murine and human melanoma cell lines, we analyzed the effects of LBH589 on proliferation and survival. In addition, we analyzed the expression of several immunologically relevant surface markers and melanoma differentiation antigens, and the ability of LBH589-treated melanoma to activate antigen-specific T cells. Finally, we assessed the in-vivo effects of LBH589 in a mouse melanoma model. Low nanomolar concentrations of LBH589 inhibit the growth of all melanoma cell lines tested, but not normal melanocytes. This inhibition is characterized by increased apoptosis as well as a G1 cell cycle arrest. In addition, LBH589 augments the expression of major histocompatibility complex and costimulatory molecules on melanoma cells leading to an increased ability to activate antigen-specific T cells. Treatment also increases expression of melanoma differentiation antigens. In vivo, LBH589 treatment of melanoma-bearing mice results in a significant increase in survival. However, in immunodeficient mice, the therapeutic effect of LBH589 is lost. Taken together, LBH589 exerts a dual effect upon melanoma cells by affecting not only growth/survival but also by increasing melanoma immunogenicity. These effects provide the framework for future evaluation of this HDAC inhibitor in melanoma treatment.”


ASCO: Sulforaphane in Prostate Cancer Found Worthy of Further Investigation

“Treatment with 200 µmol per day of sulforaphane for 20 weeks was ‘feasible, safe,’ and inhibited histone deacetylase (HDAC) function in a single-arm study of 20 patients who had non-castrate biochemical (PSA)-recurrence of prostate cancer despite surgery or radiation (Abstract 5017). Findings were reported by Joshi J. Alumkal, MD, of the Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.”