Finally: An Active Prostate Cancer Drug That Doesn’t Target Androgen


Most of the recent developments in prostate cancer treatment have addressed the timing and duration of androgen deprivation, who should receive radiation treatments, and the timing of the few available chemotherapy options. But this month’s big news is a welcome change: metastatic castration-resistant prostate cancers (mCRPCs) that harbor mutations in BRCA2 or one of a few other genes have a remarkable response to olaparib (Lynparza), a drug that inhibits the enzyme PARP1. Continue reading…


Clinical Test Validates Precision Medicine for Cancer

“Much of precision medicine and cancer care focuses on targeting the genomes of specific tumors or metastases. A Weill Cornell Medical College research team has now shown that a more global look at the body using next-generation sequencing can offer new insights and treatment targets in patients with advanced, treatment-resistant disease.

“The research, published May 28 in JAMA Oncology, offers a look at how the Institute for Precision Medicine at Weill Cornell and NewYork-Presbyterian Hospital is transforming the way physician-scientists address individualized cancer care.

” ‘Most institutions are using focused or panel sequencing to look at a few hot spot mutation areas in cancer,’ said senior author Dr. Mark Rubin, the institute’s director, and the Homer T. Hirst III Professor of Oncology in Pathology and a professor of pathology and laboratory medicine at Weill Cornell. ‘But we believe that Whole Exome Sequencing, which tests more than 21,000 genes in the cancer’s exome, the DNA that is transcribed into RNA, is ideal for patients with advanced cancer where we don’t know where the mutations of resistance are.’ “


Faster Genetic Testing Method will Likely Transform Care for Many Patients with Breast Cancer

“When a woman is diagnosed with breast cancer, it’s important to know as much about her tumour as possible to determine the best treatment. Most cases of breast cancer are sporadic, but a minority are hereditary and caused by one or more mutations in genes such as BRCA1 or BRCA2. To find such genetic mutations in newly diagnosed patients, researchers must sequence the woman’s DNA, which is generally a relatively slow process that generates results weeks or months after patients have started treatment. Next generation sequencing (NGS) is a newer method of sequencing DNA that processes large amounts of data. It’s faster and more expensive than conventional sequencing, but in recent years it has become cheaper and more widely accessible by rapid advances in computing power. With the use of NGS, which will soon become the mainstay of clinical genetics, breast cancer units will likely be able to get the results of genetic testing before patients begin their breast cancer treatment.”


Next-Generation Genome Screening is Step toward Precision Cancer Medicine for Lung Cancer

“Precision cancer medicine has taken a strong step forward at the Ohio State University Comprehensive Cancer Center. The technology, known as next generation “multiplex” gene sequencing, analyzes 50-plus genes in DNA extracted from a tumor biopsy for particular genetic mutations. Previous technology required pathologists to analyze one mutation per tissue sample. This second-generation genome sequencing assesses more than 2,500 mutations in a single reaction.”


A Pilot Study Using Next-Generation Sequencing in Advanced Cancers: Feasibility and Challenges

“New anticancer agents that target a single cell surface receptor, up-regulated or amplified gene product, or mutated gene, have met with some success in treating advanced cancers. However, patients’ tumors still eventually progress on these therapies. If it were possible to identify a larger number of targetable vulnerabilities in an individual’s tumor, multiple targets could be exploited with the use of specific therapeutic agents, thus possibly giving the patient viable therapeutic alternatives.”


A Pilot Study Using Next-Generation Sequencing in Advanced Cancers: Feasibility and Challenges

“New anticancer agents that target a single cell surface receptor, up-regulated or amplified gene product, or mutated gene, have met with some success in treating advanced cancers. However, patients’ tumors still eventually progress on these therapies. If it were possible to identify a larger number of targetable vulnerabilities in an individual’s tumor, multiple targets could be exploited with the use of specific therapeutic agents, thus possibly giving the patient viable therapeutic alternatives.”


A Pilot Study Using Next-Generation Sequencing in Advanced Cancers: Feasibility and Challenges

“New anticancer agents that target a single cell surface receptor, up-regulated or amplified gene product, or mutated gene, have met with some success in treating advanced cancers. However, patients’ tumors still eventually progress on these therapies. If it were possible to identify a larger number of targetable vulnerabilities in an individual’s tumor, multiple targets could be exploited with the use of specific therapeutic agents, thus possibly giving the patient viable therapeutic alternatives.”