Biomarkers Accurately Distinguish Mesothelioma from Non-Cancerous Tissue

“Scientists have identified four biomarkers that may help resolve the difficult differential diagnosis between malignant pleural mesothelioma (MPM) and non-cancerous pleural tissue with reactive mesothelial proliferations (RMPs). This is a frequent differential diagnostic problem in pleural biopsy samples taken from patients with clinical suspicion of MPM. The ability to make more accurate diagnoses earlier may facilitate improved patient outcomes. This new study appears in the Journal of Molecular Diagnostics.”

Editor’s note: Diagnosis of cancer is not always straightforward. New techniques allow doctors to use the molecular/genetic characteristics of a tumor to more quickly and accurately diagnose cancer. In the research described here, scientists identified new molecular characteristics (“biomarkers”) that could be used to help identify mesothelioma tumors.


Melanoma of the Eye: Better Diagnostics and Future Treatments


Laitr Keiows / Wikimedia Commons Laitr Keiows / Wikimedia Commons

Ocular melanomas, or melanomas found in the eye, are fairly infrequent, but they are the most common type of eye tumor. In the U.S., there are about 2,000 cases diagnosed each year. They occur within one of the three parts of the eye: the iris, the choroid, or the ciliary body. Collectively, these are known as the ‘uvea,’ hence an alternative name for this cancer: uveal melanoma. Continue reading…


Responses with Crizotinib in MET-Amplified Lung Cancer Show New Targetable Form of Disease

In 2011, the drug crizotinib earned accelerated approval by the US FDA to target the subset of advanced non-small cell lung cancers caused by rearrangements of the anaplastic lymphoma kinase (ALK) gene, and subsequently was granted regular approval in 2013. The drug also has shown dramatic responses in patients whose lung cancers harbored a different molecular abnormality, namely ROS1 gene rearrangements. Previously unreported phase 1 clinical trial results now show that crizotinib may have a third important molecular target. In advanced non-small cell lung cancer patients with intermediate and high amplifications of the MET gene, crizotinib produced either disease stabilization or tumor response. Sixty-seven percent of patients with high MET amplification showed prolonged response to the drug, which lasted from approximately 6 months to nearly 2.5 years.”

Editor’s note: Crizotinib (aka Xalkori) is a targeted therapy drug that kills cancer cells by targeting certain molecules found in the cells. It was already known that crizotinib works well for some patients with advanced non-small cell lung cancer (NSCLC) whose cancer cells have mutations in the ALK gene and in the ROS1 gene; such mutations, or “molecular biomarkers,” are detected by a medical procedure known as “molecular testing,” or “genetic testing.” Now, scientists say that crizotinib may also be effective for patients with advanced NSCLC whose tumors have abnormally high activity of a protein called MET, which can also be detected via molecular testing.


New EGFR Inhibitor AZD9291 Shows Promising Activity in Treatment-Resistant Non–Small Cell Lung Cancer

“Findings from a phase I study of a new mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AZD9291, point to a promising new treatment option for patients with advanced, EGFR-mutant, non–small cell lung cancer (NSCLC) that is resistant to standard EGFR inhibitors. Roughly 50% of patients experienced tumor shrinkage, and the drug worked particularly well in patients with the T790M mutation (detected in 60% of patients), which causes the most common form of EGFR therapy resistance. The study was presented at a presscast in advance of the 2014 ASCO Annual Meeting (Abstract 8009^).”

Editor’s note: This story is about a new targeted therapy drug called AZD9291 that is designed to attack tumors with a mutation in the EGFR gene, as detected by molecular testing. In particular, it is designed for patients who are resistant to other so-called EGFR inhibitors as a result of developing a particular EGFR mutation known as T790M. In a clinical trial to test the drug in patients, it was found to show promising results for patients with advanced non-small cell lung cancer (NSCLC) with EGFR mutations, and even better results in patients with the T790M mutation.